题目内容
【题目】已知函数f(x)=sinx﹣xcosx.
(1)讨论f(x)在(0,2π)上的单调性;
(2)若关于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有两个根,求实数m的取值范围.
(3)求证:当x∈(0, )时,f(x)< x3 .
【答案】
(1)解:f′(x)=cosx﹣(cosx﹣xsinx)=xsinx,
f'(x)>0x∈(0,π),f'(x)<0
x∈(π,2π)f(x)的递增区间(0,π),递减区间(π,2π);
(2)解:f(x)=x2﹣2πx+m,
设h(x)=x2﹣2πx+m=(x﹣π)2+m﹣π2,
由 ,解得,0<m<π2+π;
(3)证明:令g(x)=f(x)﹣ x3,
则g′(x)=x(sinx﹣x),
当x∈(0, )时,设t(x)=sinx﹣x,则t′(x)=cosx﹣1<0,
所以t(x)在x∈(0, )单调递减,t(x)=sinx﹣x<t(0)=0,
即sinx<x,所以g′(x)<0,
所以g(x)在(0, )上单调递减,所以g(x)<g(0)=0,
所以f(x)< x3
【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)设h(x)=x2﹣2πx+m=(x﹣π)2+m﹣π2 , 根据二次函数的性质求出m的范围即可;(3)令g(x)=f(x)﹣ x3 , 求出函数的导数,根据函数的单调性求出g(x)<0,从而证出结论即可.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.
【题目】在对人们休闲方式的一次调查中,其中主要休闲方式的选择有看电视和运动,现共调查了100人,已知在这100人中随机抽取1人,抽到主要休闲方式为看电视的人的概率为。
(1)完成下列2×2列联表;
休闲方式为看电视 | 休闲方式为运动 | 合计 | |
女性 | 40 | ||
男性 | 30 | ||
合计 |
(2)请判断是否可以在犯错误的概率不超过0.005的前提下认为性别与休闲方式有关系?
参考公式
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 |