题目内容
(本小题满分14分)
设数列
的前
项和为
,已知
,
(
为常数,
,
),且
成等差数列.
(1)求
的值;
(2)求数列
的通项公式;
(3)若数列
是首项为1,公比为
的等比数列,记
,
,
.证明:
.
设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112260381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112275192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112291220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112307255.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112322538.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112353182.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112353227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112385383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112400398.gif)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112353182.gif)
(2)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112260381.gif)
(3)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112447385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112353182.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112478636.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112541739.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112385383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112572676.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112587221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441126341031.gif)
解:(新编题)
(1)∵
,
,∴
,-------------------------2分
∴
.
∵
成等差数列,∴
,
即
,∴
.---------------------------------------------------5分
解得
,或
(舍去).-----------------------------------------------------------------6分
(2)∵
,
,
∴
,-------------------8分
∴
,------------------------------------------9分
又
,∴数列
的通项公式是
.-----------------------------------10分
(3)证明:∵数列
是首项为1,公比为
的等比数列,∴
.---------11分
∵
,
,
∴
, ①
, ②
①式两边乘以
得
③
由②③得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441132892615.gif)
将
代入上式,得
.-----------------------------------------14分
另证: 先用错位相减法求
,再验证
.
∵数列
是首项为1,公比为
的等比数列,∴
. --------------11分
又
,所以
①
②
将①乘以2得:
③
①-③得:
,
整理得:
-------------------------12分
将②乘以
得:
④
②-④整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441138821790.gif)
-----------------------------------------13分
∴
-----------------------------------------14分
(1)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112307255.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112322538.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112728619.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112743913.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112400398.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112775438.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112806451.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112821335.gif)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112587221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112899220.gif)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112307255.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112931545.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441129461424.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441126341031.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112977244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112260381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113009526.gif)
(3)证明:∵数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112447385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112353182.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113087390.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113102666.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113133666.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113165846.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113180811.gif)
①式两边乘以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112353182.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113258905.gif)
由②③得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441132892615.gif)
将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112587221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112572676.gif)
另证: 先用错位相减法求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113321376.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112572676.gif)
∵数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112447385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112587221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113695399.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113009526.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113726717.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113742714.gif)
将①乘以2得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113773716.gif)
①-③得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441137891348.gif)
整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113804570.gif)
将②乘以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113835202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144113851749.gif)
②-④整理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231441138821790.gif)
-----------------------------------------13分
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823144112572676.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目