题目内容
【题目】在平面直角坐标系xOy中,圆C的参数方程为 (θ为参数),以O为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系.
(1)求圆C的极坐标方程;
(2)若直线l的极坐标方程是 ,射线 与圆C的交点为O、P,与直线l的交点为Q.求线段PQ的长.
【答案】
(1)解:利用cos2φ+sin2φ=1,把圆C的参数方程 (θ为参数),化为(x﹣1)2+y2=1,
∴ρ2﹣2ρcosθ=0,即ρ=2cosθ
(2)解:设(ρ1,θ1)为点P的极坐标,则P(1, ).
由直线l的极坐标方程是 ,可得Q(3, ),
∴|PQ|=|ρ1﹣ρ2|=2
【解析】(1)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(2)求出点P、Q的极坐标,利用|PQ|=|ρ1﹣ρ2|即可得出.
练习册系列答案
相关题目
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据
(1)求
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(附: ,,,,其中,为样本平均值)