题目内容
1.通过调查发现,某班学生患近视的概率为0.4,现随机抽取该班的2名同学进行体检,则他们都不近似的概率是0.36.分析 由题意可得每个学生不近视的概率为0.6,再利用相互独立事件的概率乘法公式求得随机抽取该班的2名同学进行体检,他们都不近似的概率.
解答 解:由题意可得每个学生不近视的概率为0.6,随机抽取该班的2名同学进行体检,他们都不近似的概率是0.6×0.6=0.36,
故答案为:0.36.
点评 本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
练习册系列答案
相关题目
12.已知随机变量X的概率分布列如表所示:且X的数学期望EX=6,则( )
X | 5 | 6 | 7 | 8 |
p | 0.4 | a | b | 0.1 |
A. | a=0.3,b=0.2 | B. | a=0.2,b=0.3 | C. | a=0.4,b=0.1 | D. | a=0.1,b=0.4 |
6.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:P(K2≥3.841=0.05)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
年级名次 是否近视 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
13.已知sin(α+β)cosβ-cos(α+β)sinβ=$\frac{3}{5}$,且α在第二象限,则tan$\frac{α}{2}$( )
A. | $\frac{1}{3}$或-3 | B. | 3 | C. | $\frac{1}{3}$ | D. | 3或-$\frac{1}{3}$ |