题目内容
【题目】在直角坐标系中,曲线:与直线:交于,两点.
(1)若的面积为,求;
(2)轴上是否存在点,使得当变动时,总有?若存在,求以线段为直径的圆的方程;若不存在,请说明理由.
【答案】(1)(2)存在,方程为(或)
【解析】
(1)联立直线与抛物线方程,设出,两点坐标,结合韦达定理,由弦长公式求出,由点到直线距离公式求出到的距离,再由即可求出结果;
(2)等价于直线,倾斜角互补,所以只需求出使直线,斜率之和为的点坐标即可,进而可求出结果.
解:(1)将代入,得,
设,,则,,
从而 .
因为到的距离为,
所以的面积 ,
解得.
(2)存在符合题意的点,证明如下:
设为符合题意的点,直线,的斜率分别为,.
从而
.
当时,有,则直线的倾斜角与直线的倾斜角互补,
故,所以点符合题意.
故以线段为直径的圆的方程为(或)
【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).
(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本 的相关系数,
,,.