题目内容
【题目】已知曲线的极坐标方程是,以极点为原点,以极轴为轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线的参数方程为 .
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设曲线经过伸缩变换得到曲线,曲线上任一点为,求的取值范围.
【答案】(1) 直线的普通方程为,曲线的直角坐标方程为.
(2)的取值范围是.
【解析】
试题(Ⅰ)利用,将转化成直角坐标方程,利用消参法法去直线参数方程中的参数,得到直线的普通方程;(Ⅱ)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出其范围即可.
试题解析:(Ⅰ)直线的普通方程
曲线的直角坐标方程为
(Ⅱ)曲线经过伸缩变换得到曲线的方程为,即
又点在曲线上,则(为参数)
代入,得
所以的取值范围是.
【题目】已知椭圆的左焦点为,过点的直线交椭圆于两点,为坐标原点.
(1)若的斜率为,为的中点,且的斜率为,求椭圆的方程;
(2)连结并延长,交椭圆于点,若椭圆的长半轴长是大于的给定常数,求的面积的最大值.
【题目】环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数溶度,制定了空气质量标准:
某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.
(1)求频率分布直方图中的值;
(2)若按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如表:
根据限行前6年180天与限行后60天的数据,计算并填写列联表,并回答是否有的把握认为空气质量的优良与汽车尾气的排放有关.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式: ,其中.