题目内容

(本题满分15分)
已知函数f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 试讨论函数f (x )的单调性;
(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.


解: (1) ①当a>0时, f(x)在(-∞,0),上是减函数,在上是增函数.
②当a<0时, f(x)在(-∞, ),(0, +∞)上是增函数,在(,0)上是减函数.
(2)当0<<1时,f(x)的最大值为3-,
当1≤≤2时,f(x)的最大值为,
>2时,f(x)的最大值为

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网