题目内容
已知函数f(x)=x+4x+3,g(x)为一次函数,若f(g(x))=x+10x+24,求g(x)的表达式.
g(x)=x+3或g(x)="-x-7"
解析
(本小题满分12分)已知函数。⑴求函数的定义域⑵求函数的值域。⑶求函数的单调区间
.已知函数, 其反函数为(1) 若的定义域为,求实数的取值范围;(2) 当时,求函数的最小值;(3) 是否存在实数,使得函数的定义域为,值域为,若存在,求出、的值;若不存在,则说明理由.
(本题满分15分)已知函数f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .(Ⅰ) 试讨论函数f (x )的单调性;(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.
已知三次函数的导函数,,、为实数。(Ⅰ)若曲线在点(,)处切线的斜率为12,求的值;(Ⅱ)若在区间[-1,1]上的最小值、最大值分别为-2、1,且,求函数的解析式。
已知函数对任意实数恒有且当x>0,(1)判断的奇偶性;(2)求在区间[-3,3]上的最大值;(3)解关于的不等式
(12分)设函数.(1)求的单调区间;(2)当时,求函数在区间上的最小值.
已知函数f (x)=x 2+ax ,且对任意的实数x都有f (1+x)=f (1-x) 成立.(1)求实数 a的值;(2)利用单调性的定义证明函数f(x)在区间[1,+∞上是增函数.
(本小题满分14分)若,,,为常数,且(Ⅰ)求对所有实数成立的充要条件(用表示);(Ⅱ)设为两实数,且,若求证:在区间上的单调增区间的长度和为(闭区间的长度定义为).