题目内容
【题目】在平面直角坐标系中,点,分别是椭圆 的左、右焦点,过点且与轴垂直的直线与椭圆交于,两点.若为锐角,则该椭圆的离心率的取值范围是_____
【答案】
【解析】
由题设知F1(﹣c,0),F2(c,0),A(﹣c,),B(﹣c,),由△是锐角三角形,知tan∠AF1 F2<1,所以1,由此能求出椭圆的离心率e的取值范围.
解:∵点F1、F2分别是椭圆1(a>b>0)的左、右焦点,
过F1且垂直于x轴的直线与椭圆交于A、B两点,
∴F1(﹣c,0),F2(c,0),A(c,),B(c,),
∵△是锐角三角形,
∴∠AF1 F2<45°,∴tan∠AF1 F2<1,
∴1,
整理,得b2<2ac,
∴a2﹣c2<2ac,
两边同时除以a2,并整理,得e2+2e﹣1>0,
解得e1,或e1,(舍),
∴0<e<1,
∴椭圆的离心率e的取值范围是(1,1).
故答案为:(1,1).
练习册系列答案
相关题目