题目内容

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0
(1)求p0的值;
(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?

【答案】
(1)解:由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.

由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=


(2)解:设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1600x+2400y.

依题意,x,y还需满足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p0

由(1)知,p0=P(X≤900),故P(X≤36x+60y)≥p0等价于36x+60y≥900.

于是问题等价于求满足约束条件

且使目标函数z=1600x+2400y达到最小值的x,y.

作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6).

由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上截距 最小,即z取得最小值.

故应配备A型车5辆,B型车12辆.


【解析】(1)变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0 . (2)设每天应派出A型x辆、B型车y辆,根据条件列出不等式组,即得线性约束条件,列出目标函数,画出可行域求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网