题目内容
【题目】观察下列不等式:
,
,
…
照此规律,第五个不等式为 .
【答案】1+
【解析】解:由已知中的不等式
1+ < ,1+ + < ,…
得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方
右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,
故可以归纳出第n个不等式是 1+ + …+ < ,(n≥2),
所以第五个不等式为1+
故答案为:1+
由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式,再令n=5,即可得出第五个不等式
练习册系列答案
相关题目
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
温差x(℃) | 8 | 11 | 12 | 13 | 10 |
发芽数y(颗) | 16 | 25 | 26 | 30 | 23 |
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(注: , )
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程 ;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?