题目内容
【题目】如图,直三棱柱中,分别是的中点,.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析 (2)
【解析】
(1)连接交于点,由三角形中位线定理得,由此能证明平面.
(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系.分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.
证明:证明:连接交于点,
则为的中点.又是的中点,
连接,则.
因为平面,平面,
所以平面.
(2)由,可得:,即
所以
又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系, 则,
设平面的法向量为,则且,可解得,令,得平面的一个法向量为,
同理可得平面的一个法向量为,
则
所以二面角的余弦值为.
练习册系列答案
相关题目
【题目】大数据时代对于现代人的数据分析能力要求越来越高,数据拟合是一种把现有数据通过数学方法来代入某条数式的表示方式,比如,,2,,n是平面直角坐标系上的一系列点,用函数来拟合该组数据,尽可能使得函数图象与点列比较接近.其中一种描述接近程度的指标是函数的拟合误差,拟合误差越小越好,定义函数的拟合误差为:.已知平面直角坐标系上5个点的坐标数据如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函数来拟合上述表格中的数据,求该函数的拟合误差的最小值,并求出此时的函数解析式;
若用二次函数来拟合题干表格中的数据,求;
请比较第问中的和第问中的,用哪一个函数拟合题目中给出的数据更好?请至少写出三条理由