题目内容
20.cos240°=( )A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
分析 运用诱导公式及特殊角的三角函数值即可化简求值.
解答 解:cos240°=cos(180°+60°)=-cos60°=-$\frac{1}{2}$,
故选:B.
点评 本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.
练习册系列答案
相关题目
5.若存在至少一个x(x≥0)使得关于x的不等式x2≤4-|2x-m|成立,则实数m的取值范围为( )
A. | [-4,5] | B. | [-5,5] | C. | [4,5] | D. | [-5,4] |
12.某学校的三个学生社团人数分布如下表(每名学生只能参加一个社团):
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果相声社被抽出了6人.
(Ⅰ)求相声社女生有多少人;
(Ⅱ)已知三个社团各有社长两名,且均为一名男生一名女生,现从6名社长中随机选出2名(每人被选到的可能性相同).
①用恰当字母列举出所有可能的结果;
②设M为事件“选出的2人来自不同社团且恰有1名男社长和1名女社长”,求事件M发生的概率.
围棋社 | 舞蹈社 | 相声社 | |
男生 | 5 | 10 | 28 |
女生 | 15 | 30 | m |
(Ⅰ)求相声社女生有多少人;
(Ⅱ)已知三个社团各有社长两名,且均为一名男生一名女生,现从6名社长中随机选出2名(每人被选到的可能性相同).
①用恰当字母列举出所有可能的结果;
②设M为事件“选出的2人来自不同社团且恰有1名男社长和1名女社长”,求事件M发生的概率.