ÌâÄ¿ÄÚÈÝ
12£®Ä³Ñ§Ð£µÄÈý¸öѧÉúÉçÍÅÈËÊý·Ö²¼ÈçÏÂ±í£¨Ã¿ÃûѧÉúÖ»ÄܲμÓÒ»¸öÉçÍÅ£©£ºÎ§ÆåÉç | Î赸Éç | ÏàÉùÉç | |
ÄÐÉú | 5 | 10 | 28 |
Å®Éú | 15 | 30 | m |
£¨¢ñ£©ÇóÏàÉùÉçÅ®ÉúÓжàÉÙÈË£»
£¨¢ò£©ÒÑÖªÈý¸öÉçÍŸ÷ÓÐÉ糤Á½Ãû£¬ÇÒ¾ùΪһÃûÄÐÉúÒ»ÃûÅ®Éú£¬ÏÖ´Ó6ÃûÉ糤ÖÐËæ»úÑ¡³ö2Ãû£¨Ã¿È˱»Ñ¡µ½µÄ¿ÉÄÜÐÔÏàͬ£©£®
¢ÙÓÃÇ¡µ±×ÖĸÁоٳöËùÓпÉÄܵĽá¹û£»
¢ÚÉèMΪʼþ¡°Ñ¡³öµÄ2ÈËÀ´×Ô²»Í¬ÉçÍÅÇÒÇ¡ÓÐ1ÃûÄÐÉ糤ºÍ1ÃûÅ®É糤¡±£¬ÇóʼþM·¢ÉúµÄ¸ÅÂÊ£®
·ÖÎö £¨¢ñ£©ÓÉ·Ö²ã³éÑùµÄÌصã¿ÉµÃmµÄ·½³Ì£¬½â·½³Ì¿ÉµÃ£»
£¨¢ò£©Éè3¸öÉçÍŵÄÄÐÉ糤ÒÀ´ÎΪa£¬b£¬c£¬3¸öÉçÍŵÄÅ®É糤ÒÀ´ÎΪA£¬B£¬C£¬ÁоٿɵÃ×ܵĻù±¾Ê¼þ¹²15ÖÖ£¬Mº¬6ÖÖ£¬ÓɸÅÂʹ«Ê½¿ÉµÃ£®
½â´ð ½â£º£¨¢ñ£©¡ß°´·Ö²ã³éÑùµÄ·½·¨´ÓÈý¸öÉçÍųÉÔ±ÖгéÈ¡18ÈË£¬ÏàÉùÉç±»³é³öÁË6ÈË£¬
¡à$\frac{6}{28+m}=\frac{18}{20+40+28+m}$£¬½âµÃm=2£¬
¡àÏàÉùÉçÅ®ÉúÓÐ2ÈË£»
£¨¢ò£©Éè3¸öÉçÍŵÄÄÐÉ糤ÒÀ´ÎΪa£¬b£¬c£¬3¸öÉçÍŵÄÅ®É糤ÒÀ´ÎΪA£¬B£¬C£¬
´Ó6ÃûÉ糤ÖÐËæ»úÑ¡³ö2ÃûËùÓпÉÄܽá¹ûΪ£º{a£¬A}£¬{a£¬B}£¬{a£¬C}£¬{b£¬A}£¬
{b£¬B}£¬{b£¬C}£¬{c£¬A}£¬{c£¬B}£¬{c£¬C}{A£¬B}£¬{A£¬C}£¬{B£¬C}£¬{a£¬b}
£¬{a£¬c}£¬{b£¬c}¹²15ÖÖ£¬
MËùº¬»ù±¾Ê¼þΪ£º{a£¬B}£¬{a£¬C}£¬{b£¬A}£¬{b£¬C}£¬{c£¬A}£¬{c£¬B}¹²6ÖÖ£¬
ÓɸÅÂʹ«Ê½¿ÉµÃ$P£¨M£©=\frac{6}{15}=\frac{2}{5}$
µãÆÀ ±¾Ì⿼²éÁоٷ¨Çó»ù±¾Ê¼þ¼°Ê¼þ·¢ÉúµÄ¸ÅÂÊ£¬Éæ¼°·Ö²ã³éÑù£¬Êô»ù´¡Ì⣮
A£® | $\frac{1}{2}$ | B£® | $-\frac{1}{2}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | $-\frac{{\sqrt{3}}}{2}$ |
A£® | $\frac{1}{6}$ | B£® | $\frac{1}{4}$ | C£® | $\frac{2}{9}$ | D£® | $\frac{1}{3}$ |
A£® | £¨-¡Þ£¬4£© | B£® | [0£¬4£© | C£® | £¨0£¬$\frac{1}{4}$] | D£® | [0£¬$\frac{1}{4}$] |