题目内容

已知抛物线C:y2=4x,O为坐标原点,F为C的焦点,P是C上一点.若△OPF是等腰三角形,则|PO|=______.
∵抛物线C:y2=4x,
∴抛物线的焦点坐标为(1,0),
∵△OPF是等腰三角形,
∴OP=OF或OP=PF或OF=PF(舍去因抛物线上点不可能满足),
当OP=OF时,|PO|=|OF|=1,
当OP=PF时,点P在OF的垂直平分线上,则点P的横坐标为
1
2

点P在抛物线上,则纵坐标为±
2

∴|PO|=
(
1
2
)2+(±
2
)2
=
3
2

综上所述:|PO|=
3
2
或1.
故答案为:
3
2
或1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网