题目内容
【题目】已知椭圆的半焦距为,圆与椭圆有且仅有两个公共点,直线与椭圆只有一个公共点.
(1)求椭圆的标准方程;
(2)已知动直线过椭圆的左焦点,且与椭圆分别交于两点,试问:轴上是否存在定点,使得为定值?若存在,求出该定值和点的坐标;若不存在,请说明理由.
【答案】(1)(2)在轴上存在点,使得为定值
【解析】
(1)根据已知求出即得椭圆的标准方程;(2)当直线的斜率存在时,设直线的方程为,设,利用韦达定理和向量的数量积求出,此时为定值;当直线的斜率不存在时,直线的方程为,求出此时点R也满足前面的结论,即得解.
(1)依题意,得,
则,
故椭圆的标准方程为.
当直线的斜率存在时,设直线的方程为,
代人椭圆的方程,可得
设,,则,
设,则
若为定值,则,解得
此时
点的坐标为
②当直线的斜率不存在时,直线的方程为,代人,得
不妨设,若,则
综上所述,在轴上存在点,使得为定值
练习册系列答案
相关题目
【题目】一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:
温度 | 20 | 25 | 30 | 35 |
产卵数个 | 5 | 20 | 100 | 325 |
参考数据:,,,
,,
,,
,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);
(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)