题目内容
【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
组号 | 分组 | 频数 | 频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 | |||
合计 |
(1)求、
、
的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这
名学生中随机抽取
名学生与张老师面谈,求第三组中至少有
名学生与张老师面谈的概率
【答案】(1),
,
;(2)
.
【解析】
试题分析:(1)先根据相应组的频数除以样本总容量等于相应组的频率列式求出、
、
的值;(2)先利用分成抽样的方法确定从第三、四、五组抽取的人数,并将从每组抽取的人进行编号,利用列举法将所有的基本事件列举出,并确定基本事件总数,然后确定问题中设计事件的基本事件及其数目,利用古典概型的概率计算公式求出相应事件的概率.
试题解析:(1)依题意,得,
,
,
解得,
,
;
(2)因为第三、四、五组共有名学生,用分层抽样的方法抽取
名学生,
则第三、四、五组分别抽取名,
名,
名.
第三组的名学生记为
、
、
,第四组的
名学生记为
、
,第五组的
名学生记为
,
则从名学生中随机抽取
名,共有
种不同取法,具体如下:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
其中第三组的名学生
、
、
没有一名学生被抽取的情况有
种,具体如下:
、
、
,
故第三组中至少有名学生与张老师面谈的概率为
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温
(
)与该奶茶店的
品牌饮料销量
(杯),得到如表数据:
日期 | 1月11号 | 1月12号 | 1月13号 | 1月14号 | 1月15号 |
平均气温 | 9 | 10 | 12 | 11 | 8 |
销量 | 23 | 25 | 30 | 26 | 21 |
(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出关于
的线性回归方程式
;
(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.
(参考公式:,
)