题目内容
【题目】如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且.
(I)求证: 为直角三角形;
(II)试确定的值,使得二面角的平面角余弦值为.
【答案】(1)见解析;(II) .
【解析】试题分析:(1)取中点,连结,以为原点, 为轴, 为轴, 为轴,建立空间直角坐标系,利用向量法能证明为直角三角形;(2)设,由,得,求出平面的法向量和平面的法向量,,根据空间向量夹角余弦公式能求出结果.
试题解析:(I)取中点,连结,依题意可知均为正三角形,所以,
又平面平面,
所以平面,
又平面,所以,
因为,所以,即,
从而为直角三角形.
说明:利用 平面证明正确,同样满分!
(II)[向量法]由(I)可知,又平面平面,平面平面,
平面,所以平面.
以为原点,建立空间直角坐标系如图所示,则
,
由可得点的坐标
所以,
设平面的法向量为,则,
即解得,
令,得,
显然平面的一个法向量为,
依题意,
解得或(舍去),
所以,当时,二面角的余弦值为.
[传统法]由(I)可知平面,所以,
所以为二面角的平面角,
即,
在中, ,
所以
,
由正弦定理可得,即
解得,
又,所以,
所以,当时,二面角的余弦值为.
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合计 | 1 |
(1)求出表中及图中的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.
【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
组号 | 分组 | 频数 | 频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 | |||
合计 |
(1)求、、的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率