题目内容

【题目】某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.

【答案】当过点M),利润总额z=900x+600y取最大值130000元.

【解析】

试题分析:设生产甲、乙两种棉纱分别为xy吨,利润总额为z

z=900x+600y 2

4

作出以上不等式组所表示的平面区域(如图),

即可行域. 6

作直线l:900x+600y=0,即3x+2y=0,

把直线l向右上方平移至过直线2xy=250与

直线x+2y=300的交点位置M), 10

此时所求利润总额z=900x+600y取最大值130000元. 12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网