题目内容

【题目】设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1 , x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是(
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q

【答案】D
【解析】解:对于A=N* , B=N,存在函数f(x)=x﹣1,x∈N* , 满足:(i)B={f(x)|x∈A};(ii)对任意x1 , x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项A是“保序同构”;
对于A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10},存在函数 ,满足:
(i)B={f(x)|x∈A};(ii)对任意x1 , x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项B是“保序同构”;
对于A={x|0<x<1},B=R,存在函数f(x)=tan( ),满足:(i)B={f(x)|x∈A};
(ii)对任意
x1 , x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项C是“保序同构”;
前三个选项中的集合对是“保序同构”,由排除法可知,不是“保序同构”的只有D.
故选D.
利用题目给出的“保序同构”的概念,对每一个选项中给出的两个集合,利用所学知识,找出能够使两个集合满足题目所给出的条件的函数,即B是函数的值域,且函数为定义域上的增函数.排除掉是“保序同构”的,即可得到要选择的答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网