题目内容
【题目】定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“异驻点”.若函数g(x)=2016x,h(x)=ln(x+1),φ(x)=x3﹣1的“异驻点”分别为α,β,γ,则α,β,γ的大小关系为( )
A.α>β>γ
B.β>α>γ
C.β>γ>α
D.γ>α>β
【答案】D
【解析】解:①∵g(x)=2016x,∴g′(x)=2016,由g(x)=g′(x),解得2016x=2016,∴α=1.
②∵h(x)=ln(x+1),
∴h′(x)= ,由h(x)=h′(x),得到ln(x+1)= ,
令h(x)=ln(x+1)﹣ ,则h′(x)= + ,因此函数h(x)在(﹣1,+∞)单调递增.
∵h(0)=﹣1<0,h(1)=ln2﹣ >0,∴0<β<1.
③∵φ(x)=x3﹣1,∴φ′(x)=3x2 , 由φ(x)=φ′(x),得x3﹣1=2x2 ,
∵2x2>0,(x=0时不成立),∴x3﹣1>0,∴x>1,∴γ>1.
综上可知:γ>α>β.
故选:D.
【考点精析】关于本题考查的基本求导法则,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.
练习册系列答案
相关题目
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.