题目内容
如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.
(Ⅰ) 求证:平面;
(Ⅱ) 求二面角的余弦值.
(Ⅰ) 求证:平面;
(Ⅱ) 求二面角的余弦值.
(1)证明见解析(2) -
(Ⅰ)由底面ABCD为菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.
建立空间直角坐标系如图,则, .
由M为PB中点,∴.
∴.
∴,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC.
(Ⅱ)).令平面BMC的法向量,
则,从而x+z=0; ……①, ,从而. ……②
由①、②,取x=?1,则. ∴可取.
由(II)知平面CDM的法向量可取,
∴. ∴所求二面角的余弦值为-.
建立空间直角坐标系如图,则, .
由M为PB中点,∴.
∴.
∴,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC.
(Ⅱ)).令平面BMC的法向量,
则,从而x+z=0; ……①, ,从而. ……②
由①、②,取x=?1,则. ∴可取.
由(II)知平面CDM的法向量可取,
∴. ∴所求二面角的余弦值为-.
练习册系列答案
相关题目