题目内容

【题目】已知△A1B1C1的三内角余弦值分别等于△A2B2C2三内角的正弦值,那么两个三角形六个内角中的最大值为

【答案】钝角
【解析】解:∵△A1B1C1的三内角余弦值分别等于△A2B2C2三内角的正弦值,
∴由题意可知cosA1=sinA2 , cosB1=sinB2>0,cosC1=sinC2
∴A1 , B1 , C1均为锐角,
∴△A1B1C1为锐角三角形,
∵A1 , B1 , C1∈(0, ),
∴cosA1 , cosB1 , cosC1∈(0,1)
∴sinA2 , sinB2 , sinC2∈(0,1)
∴A2 , B2 , C2
∴△A2B2C2不可能是直角三角形.
假设△A2B2C2是锐角三角形,
则cosA1=sinA2=cos( -A2),cosB1=sinB2=cos( ﹣B2),cosC1=sinC2=cos( ﹣C2),
∵A2 , B2 , C2均为锐角,∴ ﹣A2 ﹣B2 ﹣C2也为锐角,
又∵A1 , B1 , C1均为锐角,∴A1= ﹣A2 , B1= ﹣B2 , C1= ﹣C2
三式相加得π= ,不成立
∴假设不成立,△A2B2C2不是锐角三角形
综上,△A2B2C2是钝角三角形.
∴两个三角形六个内角中的最大值为钝角.
所以答案是:钝角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网