题目内容

【题目】漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒赚1.7元;如果当天未能按量完成任务,则按实际完成的雕刻量领取当天工资. (I)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:

雕刻量n

210

230

250

270

300

频数

1

2

3

3

1

以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)求该雕刻师这10天的平均收入;
(ⅱ)求该雕刻师当天收入不低于300元的概率.

【答案】解:(Ⅰ)当n≥250时,f(n)=250×1.2+1.7×(n﹣250)=1.7n﹣125,

当n<250时,f(n)=1.2n,

∴雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式:

f(n)= ,(n∈N).

(Ⅱ)(i)由题意得f(210)=252,f(230)=276,f(250)=300,f(270)=334,f(300)=385,

∴X的可能取值为252,276,300,334,385,

P(X=252)=0.1,P(X=276)=0.2,P(X=300)=0.3,

P(X=334)=0.3,P(X=385)=0.1,

∴X的分布列为:

X

252

276

300

334

385

P

0.1

0.2

0.3

0.3

0.1

E(X)=252×0.1+276×0.2+300×0.3+334×0.3+385×0.1=338(元),

∴该雕刻师这10天的平均收入为338元.

(ii)由X的分布列知:

该雕刻师当天收入不低于300元的概率:

P=P(X=300)+P(X=334)+P(X=385)

=0.3+0.3+0.1=0.7


【解析】(Ⅰ)当n≥250时,f(n)=250×1.2+1.7×(n﹣250),当n<250时,f(n)=1.2n,由此能求出雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式.(Ⅱ)(i)由题意得f(210)=252,f(230)=276,f(250)=300,f(270)=334,f(300)=385,X的可能取值为252,276,300,334,385,分别求出相应的概率,由此能求出该雕刻师这10天的平均收入.(ii)由X的分布列知该雕刻师当天收入不低于300元的概率:P=P(X=300)+P(X=334)+P(X=385),由此能求出结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网