题目内容
【题目】设函数f(x)= ,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1 , x2 , 则e e 的最大值为( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
【答案】C
【解析】解:令g(x)=f(f(x))= ,
∵y=f(x)在(﹣∞,0)上单调递减,在[0,+∞)上单调递增,
∴g(x)=f(f(x))在(﹣∞,0)上单调递减,在[0,+∞)上单调递增.
做出g(x)=f(f(x))的函数图象如图所示:
∵方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,
不妨设x1<x2,则x1≤﹣1,x2≥0,且f(x1)=f(x2),即x12=e .
∴e e =e x12,
令h(x1)=e x12,则h′(x1)=e (x12+2x1)=e x1(x1+2),
∴当x1<﹣2时,h′(x1)>0,当﹣2<x1<﹣1时,h′(x1)<0,
∴h(x1)在(﹣∞,﹣2)上单调递增,在(﹣2,﹣1)上单调递减,
∴当x1=﹣2时,h(x1)取得最大值h(﹣2)= .
故选C.
【题目】漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒赚1.7元;如果当天未能按量完成任务,则按实际完成的雕刻量领取当天工资. (I)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:
雕刻量n | 210 | 230 | 250 | 270 | 300 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)求该雕刻师这10天的平均收入;
(ⅱ)求该雕刻师当天收入不低于300元的概率.