题目内容
9.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,用1,2,3,4表示命中,用5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A. | 0.35 | B. | 0.30 | C. | 0.25 | D. | 0.20 |
分析 由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有可以通过列举得到共5组随机数,根据概率公式,得到结果.
解答 解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.
共5组随机数,
∴所求概率为$\frac{5}{20}$=0.25,
故选:C.
点评 本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.
练习册系列答案
相关题目
20.以下命题中,正确命题是( )
A. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$ | B. | 若$\overrightarrow{a}$,$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}$=$\overrightarrow{b}$ | ||
C. | 若$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{b}$ | D. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}∥\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$ |
17.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x•x0+y•y0=a2与该圆的位置关系为( )
A. | 相离 | B. | 相交 | C. | 相切 | D. | 相切或相离 |
14.抛掷一枚均匀硬币两次,已知有一次是正面向上,则另一次正面向上的概率为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
18.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率为( )
A. | -3 | B. | 3 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
19.已知命题p:?a0∈(0,+∞),a02-2a0-3>0,那么命题p的否定是( )
A. | ?a0∈(0,+∞),a02-2a0-3≤0 | B. | ?a0∈(-∞,0),a02-2a0-3≤0 | ||
C. | ?a∈(0,+∞),a2-2a-3≤0 | D. | ?a∈(-∞,0),a2-2a-3≤0 |