题目内容

【题目】

已知为常数,),设是首项为4,公差为2的等差数列.

1)求证:数列{}是等比数列;

2)若,记数列的前n项和为,当时,求

3)若,问是否存在实数,使得中每一项恒小于它后面的项?

若存在,求出实数的取值范围.

【答案】(1)见解析(230<m<m>1

【解析】

解:(1)由题意

∵m>0∴m2为非零常数,

数列{an}是以m4为首项,m2为公比的等比数列

2)由题意

式乘以2,得

并整理,得

=

3)由题意,要使对一切成立,

对一切成立,

m>1时,成立;

0<m<1时,

对一切成立,只需

解得 考虑到0<m<1 ∴0<m<

综上,当0<m<m>1时,数列中每一项恒小于它后面的项

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网