题目内容
【题目】在中,两直角边AB,AC的长分别为m,n(其中),以BC的中点O为圆心,作半径为r()的圆O.
(1)若圆O与的三边共有4个交点,求r的取值范围;
(2)设圆O与边BC交于P,Q两点;当r变化时,甲乙两位同学均证明出为定值甲同学的方法为:连接AP,AQ,AO,利用两个小三角形中的余弦定理来推导;乙同学的方法为;以O为原点建立合适的直角坐标系,利用坐标法来计算.请在甲乙两位同学的方法中选择一种来证明该结论,定值用含m、n的式子表示.(若用两种方法,按第一种方法给分)
【答案】(1)(2)见解析
【解析】
(1)计算出圆与边、边相切时的半径,从而得到满足要求的r的取值范围;
(2)甲同学方法:连接,,,利用余弦定理,表示出、,然后通过计算,得到,乙同学方法:以点为原点,建立坐标系,设点,将用坐标表示,通过计算,得到.
(1)因为,故当圆与边相切时,
此时圆与的三边共有3个交点;
当圆与边相切时,,
此时圆与的三边共有5个交点,
故当时,圆与的三边共有4个交点.
(2)甲同学方法:连接,,,
在中,由余弦定理可得:①
在中,由余弦定理可得:②
由,得,
又,
故①②得:,
故
乙同学方法:以点为原点,建立如图所示直角坐标系,
易知
设点,则
.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
温差(℃) | 8 | 11 | 12 | 13 | 10 |
发芽数(颗) | 16 | 25 | 26 | 30 | 23 |
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(参考:,)
(1)若选取的是11月1日与11月5日的两组数据进行检验,请根据11月2日至11月4日的三组数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?