题目内容
【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.
(1)求乙同学答对2个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是m,n,分别求出甲、乙两位同学答对题目个数m,n的概率分布和数学期望.
【答案】(1)(2)详见解析
【解析】
(1)根据独立重复事件的概率公式直接计算概率即可;
(2)由题可知,随机变量m服从超几何分布,所有可能取值为1,2,3;随机变量n服从二项分布,所有可能取值为0,1,2,3;然后分别根据超几何分布、二项分布求概率的方式逐一求出每个m、n的取值所对应的概率即可得分布列,进而求得数学期望.
(1)由题意知乙同学答对题目个数n~B(3,),
乙同学答对2个题目的概率为P.
(2)甲同学答对题目个数m的所有可能取值1,2,3,
P(m=1),P(m=2),P(m=3).
∴m的分布列为
数学期望E(m).
乙同学答对题目个数n~B(3,),n的所有可能取值为0,1,2,3,
P(n=0),P(n=1),
P(n=2),P(n=3).
∴n的分布列为:
数学期望E(n).
【题目】2012年12月18日,作为全国首批开展空气质量新标准监测的74个城市之一,郑州市正式发布数据.资料表明,近几年来,郑州市雾霾治理取得了很大成效,空气质量与前几年相比得到了很大改善.郑州市设有9个监测站点监测空气质量指数(),其中在轻度污染区、中度污染区、重度污染区分别设有2,5,2个监测站点,以9个站点测得的的平均值为依据,播报我市的空气质量.
(Ⅰ)若某日播报的为118,已知轻度污染区的平均值为74,中度污染区的平均值为114,求重度污染区的平均值;
(Ⅱ)如图是2018年11月的30天中的分布,11月份仅有一天在内.
组数 | 分组 | 天数 |
第一组 | 3 | |
第二组 | 4 | |
第三组 | 4 | |
第四组 | 6 | |
第五组 | 5 | |
第六组 | 4 | |
第七组 | 3 | |
第八组 | 1 |
①郑州市某中学利用每周日的时间进行社会实践活动,以公布的为标准,如果小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;
②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到不小于180的天数为,求的分布列及数学期望.