题目内容

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,BC=2AB=4, ,E是A1D1的中点.
(Ⅰ)在平面A1B1C1D1内,请作出过点E与CE垂直的直线l,并证明l⊥CE;
(Ⅱ)设(Ⅰ)中所作直线l与CE确定的平面为α,求点C1到平面α的距离.

【答案】解:(Ⅰ)如图所示,连接B1E,C1E,则直线B1E即为所求直线l ∵在长方体ABCD﹣A1B1C1D1中,CC1⊥平面A1B1C1D1
∴B1E⊥CC1
∵B1C1=2A1B1=4,E是A1D1的中点
∴B1E⊥C1E
又CC1∩C1E=C1
∴B1E⊥平面CC1E
∴B1E⊥CE,即l⊥CE
(Ⅱ)如图所示,连接B1C,则平面CEB1即为平面α
过点C1作C1F⊥CE于F
由(Ⅰ)知B1E⊥平面CC1E,故B1E⊥C1F
∵C1F⊥CE,CE∩B1E=E
∴C1F⊥平面CEB1 , 即C1F⊥平面α
∴直线CC1和平面α所成角为∠FCC1
∵在△ECC1中, ,且EC1⊥CC1
∴C1F=2
∴点C1到平面α的距离为2

【解析】(Ⅰ)连接B1E,C1E,则直线B1E即为所求直线l,推导出B1E⊥CC1 , B1E⊥C1E,能证明l⊥CE.(Ⅱ)连接B1C,则平面CEB1即为平面α,过点C1作C1F⊥CE于F,则C1F⊥平面α,直线CC1和平面α所成角为∠FCC1 , 由此能求出点C1到平面α的距离.
【考点精析】认真审题,首先需要了解直线与平面垂直的性质(垂直于同一个平面的两条直线平行).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网