题目内容
【题目】调查表明:甲种农作物的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定这种农作物的长势等级,若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级,为了了解目前这种农作物长势情况,研究人员随机抽取10块种植地,得到如表中结果:
种植地编号 | A1 | A2 | A3 | A4 | A5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) |
种植地编号 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
(Ⅰ)在这10块该农作物的种植地中任取两块地,求这两块地的空气湿度的指标z相同的概率;
(Ⅱ)从长势等级是一级的种植地中任取一块地,其综合指标为A,从长势等级不是一级的种植地中任取一块地,其综合指标为B,记随机变量X=A﹣B,求X的分布列及其数学期望.
【答案】解:(Ⅰ)由表可知:空气湿度指标为1的有A2 , A4 , A5 , A7 , A9 , A10空气湿度指标为2的有A1 , A3 , A6 , A8 ,
在这10块种植地中任取两块地,基本事件总数n=
这两块地的空气温度的指标z相同包含的基本事件个数
∴这两地的空气温度的指标z相同的概率
(Ⅱ)由题意得10块种植地的综合指标如下表:
编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
综合指标 | 4 | 4 | 6 | 1 | 4 | 4 | 3 | 5 | 4 | 3 |
其中长势等级是一级(ω≥4)有A1 , A2 , A3 , A5 , A6 , A8 , A9 , 共7个,
长势等级不是一级(ω<4)的有A4 , A7 , A10 , 共3个,
随机变量X=A﹣B的所有可能取值为1,2,3,4,5,
w=4的有A1 , A2 , A5 , A6 , A9共5块地,w=3的有A7 , A10共2块地,这时有X=4﹣3=1
所以 ,
同理 , ,
∴X的分布列为:
X | 1 | 2 | 3 | 4 | 5 |
P |
【解析】(Ⅰ)由表可知:空气湿度指标为1的有A2 , A4 , A5 , A7 , A9 , A10 , 空气湿度指标为2的有A1 , A3 , A6 , A8 , 求出这10块种植地中任取两块地,基本事件总数n,这两块地的空气温度的指标z相同包含的基本事件个数,然后求解概率.(Ⅱ)随机变量X=A﹣B的所有可能取值为1,2,3,4,5,求出概率得到分布列,然后求解期望即可.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
成绩/编号 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(参考公式: = , = ﹣ )
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程 = x+ ( 精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
【题目】某次数学测试之后,数学组的老师对全校数学总成绩分布在[105,135)的n名同学的19题成绩进行了分析,数据整理如下:
组数 | 分组 | 19题满分人数 | 19题满分人数占本组人数比例 |
第一组 | [105,110] | 15 | 0.3 |
第二组 | [110,115) | 30 | 0.3 |
第三组 | [115,120) | x | 0.4 |
第四组 | [120,125) | 100 | 0.5 |
第五组 | [125,130) | 120 | 0.6 |
第六组 | [130,135) | 195 | y |
(Ⅰ)补全所给的频率分布直方图,并求n,x,y的值;
(Ⅱ)现从[110,115)、[115,120)两个分数段的19题满分的试卷中,按分层抽样的方法抽取9份进行展出,并从9份试卷中选出两份作为优秀试卷,优秀试卷在[115,120)中的分数记为ξ,求随机变量ξ的分布列及期望.