题目内容
【题目】若数列{an2}是等差数列,则称数列{an}为“等方差数列”,给出以下判断:
①常数列是等方差数列;
②若数列{an}是等方差数列,则数列{an2}是等差数列;
③若数列{an}是等方差数列,则数列{an2}是等方差数列;
④若数列{an}是等方差数列,则数列{a2n}也是等方差数列,
其中正确的序号有( )
A.①②③
B.①②④
C.①③④
D.②③④
【答案】B
【解析】解:①常数列既是等方差数列,又是等差数列;
依题an+12﹣an2=an2﹣an﹣12
(an+1﹣an)(an+1+an)=(an﹣an﹣1)(an+an﹣1)
又{an}为等差数列,设公差为d,
则﹣d(an+1+an﹣an﹣an﹣1)=02d2=0d=0
故{an}是常数列.
②③:∵{an}是等方差数列,∴an2﹣an﹣12=p(p为常数)得到{an2}为首项是a12 , 公差为p的等差数列;
∴{an2}是等差数列,故②正确,③不正确;
④:数列{an}中的项列举出来是,a1 , a2 , …,an , …,a2n , …
数列{a2n}中的项列举出来是,an , a2n , …,a3n , …,
∵(an+12﹣an2)=(an+22﹣an+12)=(an+32﹣an+22)=…=(a2n2﹣a2n﹣12)=p
∴(an+12﹣an2)+(an+22﹣an+12)+(an+32﹣an+22)+…+(a2n2﹣a2n﹣12)=kp
∴(a2n+12﹣a2n2)=2p
∴{a2n}(k∈N* , k为常数)是等方差数列;故④正确.
故选:B.
根据“等方差数列”的定义,我们逐一判断可得答案.
练习册系列答案
相关题目