题目内容
【题目】某农场计划设计建造一条2000米长的水渠,其横断面如图所示.其中,底部是半径为1米的圆弧,上部是有一定倾角的线段与,渠深为米,且圆弧的圆心为O在上,,,,.据测算,水渠底部曲面每平方米的造价为百元,上部矩形壁面每平方米的造价为1百元,其他费用忽略不计.设,.
(1)试用表示水渠建造的总费用(单位:百元);
(2)试确定的值,使得建造总费用最低.
【答案】(1),.(2)
【解析】
(1)过B点作于点E,设与交于点F,则结合题设条件有,,所以所以计算可得;
(2)求出函数的导函数,分析其单调性与极值即可得解.
解:(1)因为底部圆弧所在的圆的半径为1,,
所以弧长,
过B点作于点E,设与交于点F,
则结合题设条件有,
所以
所以,
所以,.
(2)
,.
令,则,因为,则
极小值 |
当时,取得极小值,即最小值,最小值为(百元).
答:当取时,建造总费用最低.
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
该产品的年利润(百万元) | 2.1 | 2.75 | 3.5 | 3.25 | 3 | 4.9 | 6 | 6.5 |
年返修台数(台) | 21 | 22 | 28 | 65 | 80 | 65 | 84 | 88 |
部分计算结果:,,, , |
注:年返修率=
(1)从该公司2011-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中, ,.
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:
| 赞同限行 | 不赞同限行 | 合计 |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关;
(2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.
参考公式:K2=
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3..841 | 6.635 | 7.879 | 10.828 |