题目内容

【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年生产台数(万台)

2

3

4

5

6

7

10

11

该产品的年利润(百万元)

2.1

2.75

3.5

3.25

3

4.9

6

6.5

年返修台数(台)

21

22

28

65

80

65

84

88

部分计算结果:

注:年返修率=

(1)从该公司2011-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;

(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).

附:线性回归方程中, .

【答案】(1)见解析;(2)

【解析】

1)先判断得到随机变量的所有可能取值,然后根据古典概型概率公式和组合数计算得到相应的概率,进而得到分布列和期望.(2)由于去掉年的数据后不影响的值,可根据表中数据求出;然后再根据去掉年的数据后所剩数据求出即可得到回归直线方程.

(1)由数据可知,五个年份考核优秀.

由题意的所有可能取值为

的分布列为:

所以

(2)因为,所以去掉年的数据后不影响的值,

所以

又去掉年的数据之后

所以

从而回归方程为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网