题目内容
【题目】已知△ABC中,角A,B,C所对的边分别为a,b,c,若(2b﹣c)cosA=acosC.
(1)求角A;
(2)若△ABC的外接圆面积为π,求△ABC的面积的最大值.
【答案】(1)A(2).
【解析】
(1)化边为角,利用两角和正弦公式,即可求解;
(2)由正弦定理求出,和角应用余弦定理建立关系,再由基本不等式求出最大值,即可求出结论.
(1)∵(2b﹣c)cosA=acosC,
∴由正弦定理可得:(2sinB﹣sinC)cosA=sinAcosC,
可得:2sinBcosA=sinAcosC+sinCcosA=sinB,
∵sinB≠0,∴cosA,∵0<A<π,∴A,
(2)∵△ABC的外接圆面积为π,
∴△ABC的外接圆半径为1,∵,∴a,
∵由余弦定理可得a2=b2+c2﹣2bccosA,
可得3=b2+c2﹣bc≥2bc﹣bc=bc,
∴bc≤3,当且仅当b=c等号成立,
∴S△ABCbcsinA,当且仅当b=c等号成立,
∴S△ABC的最大值为.
练习册系列答案
相关题目