题目内容
【题目】已知函数.
(1)设θ∈[0,π],且f(θ)1,求θ的值;
(2)在△ABC中,AB=1,f(C)1,且△ABC的面积为,求sinA+sinB的值.
【答案】(1)(2)1
【解析】
(1)化简得,转化条件得,即可得解;
(2)由(1)知,由面积可得,由余弦定理得a2+b2=7,联立方程可求得,再利用正弦定理即可得解.
(1)
由f(θ),∴,
∴,
∵θ∈[0,π],∴(θ)∈[,],∴θ.
(2)由f(C)1,C∈(0,π),由(1)可得:C.由△ABC的面积为,∴absin,∴.
由余弦定理可得:1=a2+b2﹣2abcos,可得:a2+b2=7,
联立解得:a=2,b;或b=2,a.
∴.
∴.
∴sinA+sinB(a+b)=1.
【题目】某大型企业生产的某批产品细分为个等级,为了了解这批产品的等级分布情况,从仓库存放的件产品中随机抽取件进行检测、分类和统计,并依据以下规则对产品进行打分:级或级产品打分;级或级产品打分;级、级、级或级产品打分;其余产品打分.现在有如下检测统计表:
等级 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
频数 | 10 | 90 | 100 | 200 | 200 | 100 | 100 | 100 | 70 | 30 |
规定:打分不低于分的为优良级.
(1)①试估计该企业库存的件产品为优良级的概率;
②请估计该企业库存的件产品的平均得分.
(2)从该企业库存的件产品中随机抽取件,请估计这件产品的打分之和为分的概率.
【题目】2022年北京冬季奥运会即第24届冬季奥林匹克运动会,将在2022年2月4至2月20日在北京和张家口联合举行.某研究机构为了解大学生对冰壶运动的兴趣,随机从某大学学生中抽取了120人进行调查,经统计男生与女生的人数之比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人表示对冰壶运动没有兴趣.
(1)完成2×2列联表,并回答能否有99%的把握认为“对冰壶是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 30 | ||
女 | 15 | ||
合计 | 120 |
(2)若将频率视为概率,现再从该校全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰壶有兴趣的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望和方差.
附:参考公式,其中n=a+b+c+d.
临界值表:
P(K2≥K0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
K0 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 |