题目内容
已知函数.设, (max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记的最小值为A,的最大值为B,则( )
B
解析
某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后,AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.(1)设AB=x(米),用x表示图中DP的长度,并写出x的取值范围;(2)若要求最节能,应怎样设计薄板的长和宽?(3)若要求制冷效果最好,应怎样设计薄板的长和宽?
已知 (1)若的最小值记为,求的解析式.(2)是否存在实数,同时满足以下条件:①;②当的定义域为[,]时,值域为[,];若存在,求出,的值;若不存在,说明理由.
已知函数(为实常数).(1)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;(2)设,若不等式在有解,求的取值范围.
某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比。已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图). (1)分别写出两种产品的收益与投资的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天? (2)若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).
定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有.(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.(2)若对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.
已知函数对任意的恒有成立.(1)当b=0时,记若在)上为增函数,求c的取值范围;(2)证明:当时,成立;(3)若对满足条件的任意实数b,c,不等式恒成立,求M的最小值.
若函数f(x)=ax(a>1)的定义域和值域均为[m,n],求实数a的取值范围.