题目内容

【题目】已知数列{an}的通项公式为an=n2-n-30.

(1)求数列的前三项,60是此数列的第几项?

(2)n为何值时,an=0,an>0,an<0?

(3)该数列前n项和Sn是否存在最值?说明理由.

【答案】(1)第10项 (2)0<n<6(nN*) (3)不存在,见解析

【解析】解:(1)由an=n2-n-30,得

a1=1-1-30=-30,

a2=22-2-30=-28,

a3=32-3-30=-24.

设an=60,则60=n2-n-30.

解之得n=10或n=-9(舍去).

60是此数列的第10项.

(2)令an=n2-n-30=0,

解得n=6或n=-5(舍去),a6=0.

令n2-n-30>0,

解得n>6或n<-5(舍去).

当n>6(nN*)时,an>0.

令n2-n-30<0,解得0<n<6,

当0<n<6(nN*)时,an<0.

(3)Sn存在最小值,不存在最大值.

由an=n2-n-30=(n-)2-30,(nN*)

知{an}是递增数列,且

a1<a2<…<a5<a6=0<a7<a8<a9<…,

故Sn存在最小值S5=S6,不存在Sn的最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网