题目内容

【题目】已知圆Cx2+y2+10x+10y+34=0.

(Ⅰ)试写出圆C的圆心坐标和半径;

(Ⅱ)圆D的圆心在直线x=-5上,且与圆C相外切,被x轴截得的弦长为10,求圆D的方程;

(Ⅲ)过点P(0,2)的直线交(Ⅱ)中圆DEF两点,求弦EF的中点M的轨迹方程.

【答案】圆心坐标为(-5,-5),半径为4;((x+5)2+(y-12)2=169;(x2+y2+5x-14y+24=0.

【解析】试题分析:将圆的方程化为标准方程,即可得到圆心坐标和半径;(设圆的半径为,圆心纵坐标为,由已知条件列出方程,求出,由此能求出圆的方程;(,根据列出,化简可得到的轨迹方程.

试题解析:(Ⅰ)将圆的方程改写为(x+5)2+(y+5)2=16,故圆心坐标为(-5,-5),半径为4.

(Ⅱ)设圆D的半径为r,圆心纵坐标为b,由条件可得r2=(r-1)2+52,解得r=13.

此时圆心纵坐标b=r-1=12.

所以圆D的方程为(x+5)2+(y-12)2=169.

(Ⅲ)设M(x,y),依题意有DM⊥PM.

x≠0x≠-5),

整理得x2+y2+5x-14y+24=0x≠0x≠-5.

x=0时,y=12,符合题意,当x=-5时,y=2,符合题意.

故所求点M的轨迹方程为x2+y2+5x-14y+24=0.

练习册系列答案
相关题目

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

【答案】(1)奇函数(2)增函数(3)

【解析】试题分析:1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-11)为单调函数,

原不等式变形为f(2x-1)<-f(x),f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。

试题解析:1)函数为奇函数.证明如下:

定义域为

为奇函数

2)函数在(-11)为单调函数.证明如下:

任取,则

在(-11)上为增函数

3由(1)、(2)可得

解得:

所以,原不等式的解集为

点睛

(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。

型】解答
束】
22

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;

(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网