题目内容
20.已知f(2x+1)=3x-4,f(a)=4,则a=$\frac{19}{3}$.分析 由题意可得函数的解析式为f(x)=$\frac{3}{2}$x-$\frac{11}{2}$,可得关于a的方程,解方程可得.
解答 解:∵f(2x+1)=3x-4,
∴f(2x+1)=3x-4=$\frac{3}{2}$(2x+1)-$\frac{11}{2}$,
∴f(x)=$\frac{3}{2}$x-$\frac{11}{2}$,
∵f(a)=4,∴$\frac{3}{2}$a-$\frac{11}{2}$=4,
解得a=$\frac{19}{3}$
故答案为:$\frac{19}{3}$
点评 本题考查函数解析式的求解,属基础题.
练习册系列答案
相关题目
10.下列双曲线中,有一个焦点在抛物线y2=2x准线上的是( )
A. | 6y2-12x2=1 | B. | 12x2-6y2=1 | C. | 2x2-2y2=1 | D. | 4x2-4y2=1 |
8.下面使用类比推理正确的是( )
A. | 若直线a∥b,b∥c,则a∥c.类比推出:若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$ | |
B. | a(b+c)=ab+ac.类比推出:loga(x+y)=logax+logay | |
C. | 已知a,b∈R,若方程x2+ax+b=0有实数根,则a2-4b≥0.类比推出:已知a,b∈C,若方程x2+ax+b=0有实数根,则a2-4b≥0. | |
D. | 长方形对角线的平方等于长与宽的平方和.类比推出:长方体对角线的平方等于长、宽、高的平方和 |
5.若函数f(x)=x2+$\frac{a}{x}$(a∈R),则下列结论正确的是( )
A. | ?a∈R,f(x)在(0,+∞)上是增函数 21 | B. | ?a∈R,f(x)是偶函数育 | ||
C. | ?a∈R,f(x)在(0,+∞)上是减函数 | D. | ?a∈R,f(x)是奇函数 |
9.已知函数f(x)=x2(x-a),则不等式$\frac{f(x)}{x}$+lnx+1≥0对任意的x∈[$\frac{1}{4}$,+∞)恒成立,则实数a的取值范围为( )
A. | (-∞,4-8ln2] | B. | (-∞,$\frac{17}{4}$-8ln2] | C. | (-∞,4+8ln2] | D. | (-∞,$\frac{17}{4}$+8ln2] |
10.已知条件p:x>1或x<-3,条件q:5x-6>x2,则¬p是¬q的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |