题目内容
【题目】已知函数f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1= f(x),t2=g(x),t3=2x , 当x∈(0,1)时,试比较t1 , t2 , t3的大小.
【答案】
(1)解:因为抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,
所以函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,
因为函数f(x)在[﹣1,3m]上不单调,
所以3m>1,
得
(2)解:①因为f(1)=g(1),所以﹣2+a=0,
所以实数a的值为2.
②因为t1= f(x)=x2﹣2x+1=(x﹣1)2,
t2=g(x)=log2x,
t3=2x,
所以当x∈(0,1)时,t1∈(0,1),
t2∈(﹣∞,0),
t3∈(1,2),
所以t2<t1<t3
【解析】(1)函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,因为函数f(x)在[﹣1,3m]上不单调,以3m>1,解得实数m的取值范围;(2)①因为f(1)=g(1),所以﹣2+a=0,解得实数a的值;②设t1= f(x),t2=g(x),t3=2x , 当x∈(0,1)时,求出三个函数的值域,可得答案.
【题目】某公司生产、两种产品,且产品的质量用质量指标来衡量,质量指标越大表明产品质量越好.现按质量指标划分:质量指标大于或等于82为一等品,质量指标小于82为二等品.现随机抽取这两种产品各100件进行检测,检测结果统计如表:
测试指标 | |||||
产品 | 8 | 12 | 40 | 32 | 8 |
产品 | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)请估计产品的一等奖;
(Ⅱ)已知每件产品的利润(单位:元)与质量指标值的关系式为:
已知每件产品的利润(单位:元)与质量指标值的关系式为:
(i)分别估计生产一件产品,一件产品的利润大于0的概率;
(ii)请问生产产品, 产品各100件,哪一种产品的平均利润比较高.