题目内容

【题目】如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?

【答案】证明:(Ⅰ)过点E作EG⊥CF交CF于G,连接DG,

可得四边形BCGE为矩形.又ABCD为矩形,
所以AD⊥∥EG,从而四边形ADGE为平行四边形,故AE∥DG.
因为AE平面DCF,DG平面DCF,所以AE∥平面DCF.
(Ⅱ)解:过点B作BH⊥EF交FE的延长线于H,连接AH.

由平面ABCD⊥平面BEFG,AB⊥BC,得
AB⊥平面BEFC,
从而AH⊥EF,
所以∠AHB为二面角A﹣EF﹣C的平面角.
在Rt△EFG中,因为EG=AD=
又因为CE⊥EF,所以CF=4,
从而BE=CG=3.
于是BH=BEsin∠BEH=
因为AB=BHtan∠AHB,
所以当AB= 时,二面角A﹣EF﹣G的大小为60°
【解析】(Ⅰ)过点E作EG⊥CF并CF于G,连接DG,证明AE平行平面DCF内的直线DG,即可证明AE∥平面DCF;
(Ⅱ)过点B作BH⊥EF交FE的延长线于H,连接AH,说明∠AHB为二面角A﹣EF﹣C的平面角,通过二面角A﹣EF﹣C的大小为60°,求出AB即可.
【考点精析】根据题目的已知条件,利用直线与平面平行的判定的相关知识可以得到问题的答案,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网