题目内容

【题目】已知数列{an}满足a1=1,an+1+an= ,n∈N*
(Ⅰ)求a2 , a3 , a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

【答案】解:(Ⅰ)由题意a1=1,a2+a1= ,a3+a2= ﹣1,a4+a3=2﹣
解得:a2= ﹣1,a3= ,a4=2﹣
(Ⅱ)猜想:对任意的n∈N*,an=
当n=1时,由a1=1= ,猜想成立.
假设当n=k (k∈N*)时,猜想成立,即
ak=
则由ak+1+ak= ,得ak+1=
即当n=k+1时,猜想成立,
由①、②可知,对任意的n∈N*,猜想成立,
即数列{an}的通项公式为an=
【解析】(Ⅰ)由数列{an}的递推公式依次求出a2 , a3 , a4;(Ⅱ)根据a2 , a3 , a4值的结构特点猜想{an}的通项公式,再用数学归纳法①验证n=1成立,②假设n=k时命题成立,证明当n=k+1时命题也成立
【考点精析】关于本题考查的数列的通项公式和数学归纳法的定义,需要了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式;数学归纳法是证明关于正整数n的命题的一种方法才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网