题目内容
【题目】下列类比推理的结论正确的是( )
①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”;
②类比“平面内,同垂直于一直线的两直线相互平行”,得到猜想“空间中,同垂直于一直线的两直线相互平行”;
③类比“设等差数列{an}的前n项和为Sn , 则S4 , S8﹣S4 , S12﹣S8成等差数列”,得到猜想“设等比数列{bn}的前n项积为Tn , 则T4 , , 成等比数列”;
④类比“设AB为圆的直径,p为圆上任意一点,直线PA,PB的斜率存在,则kPA . kPB为常数”,得到猜想“设AB为椭圆的长轴,p为椭圆上任意一点,直线PA,PB的斜率存在,则kPA . kPB为常数”.
A.①②
B.③④
C.①④
D.②③
【答案】B
【解析】解: ( )与向量 共线,( ) 与向量 共线,
当 , 方向不同时,向量的数量积运算结合律不成立,故①错误,可排除A,C答案;
空间中,同垂直于一直线的两直线可能平行,可能相交,也可能异面,故②错误,可排除D答案;
故选:B.
【考点精析】根据题目的已知条件,利用类比推理的相关知识可以得到问题的答案,需要掌握根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.
练习册系列答案
相关题目