题目内容

17.已知二次函数f(x)的二次项系数为a,不等式f(x)<2x的解集是(-1,2),且方程f(x)+$\frac{9}{4}$a=0有两个相等的实数根.
(I)求f(x)的解析式;
(Ⅱ)已知不等式f(x)<0的解集为M,不等式f(x)>2(m+1)x-m2-m-2的解集为N,若M∪N=N,求实数m的取值范围.

分析 (1)设f(x)=ax2+bx+c,结合已知,利用“3个二次”的关系即可得出f(x)的解析式;
(2)根据(1)解出M,结合M∪N=N,可得实数m的取值范围.

解答 解:(1)设f(x)=ax2+bx+c,
∵不等式f(x)<2x的解集为(-1,2),
∴f(-1)+2=0,f(2)-4=0,且a>0.
又方程f(x)+$\frac{9}{4}$a=0有两个相等的实数根,即ax2+bx+c+$\frac{9}{4}$a=0的△=b2-4ac-9a2=0.
联立$\left\{\begin{array}{l}a-b+c+2=0\\ 4a+2b+c-4=0\\{b}^{2}-4ac-9{a}^{2}=0\end{array}\right.$,
解得$\left\{\begin{array}{l}a=1\\ b=1\\ c=-2\end{array}\right.$.
∴f(x)=x2+x-2.
(2)由(1)得f(x)=x2+x-2<0的解集M=(-2,1),
若不等式f(x)>2(m+1)x-m2-m-2的解集为N,
则不等式x2-(2m+1)x+m2+m>0的解集为N,
即N=(-∞,m)∪(m+1,+∞),
∵M∪N=N,
∴M⊆N,
故m≥1,或m+1≤-2,
故实数m∈(-∞,-3]∪[1,+∞).

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网