题目内容
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
(1)-1,3(2)0<a<1
(1)当a=1,b=-2时,f(x)=x2-x-3,由题意可知x=x2-x-3,得x1=-1,x2=3,故当a=1,b=-2时,f(x)的不动点是-1,3.
(2)∵f(x)=ax2+(b+1)x+b-1(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+b-1,即ax2+bx+b-1=0恒有两相异实根,∴Δ=b2-4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2-16a<0,解得0<a<1,故当b∈R,f(x)恒有两个相异的不动点时,0<a<1
(2)∵f(x)=ax2+(b+1)x+b-1(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+b-1,即ax2+bx+b-1=0恒有两相异实根,∴Δ=b2-4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2-16a<0,解得0<a<1,故当b∈R,f(x)恒有两个相异的不动点时,0<a<1
练习册系列答案
相关题目