题目内容
设、.
(1)若在上不单调,求的取值范围;
(2)若对一切恒成立,求证:;
(3)若对一切,有,且的最大值为1,求、满足的条件.
(1)若在上不单调,求的取值范围;
(2)若对一切恒成立,求证:;
(3)若对一切,有,且的最大值为1,求、满足的条件.
(1)
(2)证明见解析。
(3)且
(2)证明见解析。
(3)且
(1)由题意,;
(2)须与同时成立,即,;
(3)因为,依题意,对一切满足的实数,有.
①当有实根时,的实根在区间内,设,所以,即,又,于是,的最大值为,即,从而.故,即,解得.
②当无实根时,,由二次函数性质知,在上的最大值只能在区间的端点处取得,所以,当时,无最大值.于是,存在最大值的充要条件是,即,所以,.又的最大值为,即,从而.由,得,即.所以、满足的条件为且.综上:且
(2)须与同时成立,即,;
(3)因为,依题意,对一切满足的实数,有.
①当有实根时,的实根在区间内,设,所以,即,又,于是,的最大值为,即,从而.故,即,解得.
②当无实根时,,由二次函数性质知,在上的最大值只能在区间的端点处取得,所以,当时,无最大值.于是,存在最大值的充要条件是,即,所以,.又的最大值为,即,从而.由,得,即.所以、满足的条件为且.综上:且
练习册系列答案
相关题目