题目内容
【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cos θ,直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程及弦AB的长;
(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.
【答案】(1)(x-2)2+y2=4;;(2)2+.
【解析】
(1)圆C的极坐标方程化为直角坐标方程,直线l的参数方程代入圆C的的直角坐标方程,利用直线参数方程的几何意义,即可求解;
(2)要求△ABP的面积的最大值,只需求出点P到直线l距离的最大值,将点P坐标设为圆方程的参数形式,利用点到直线的距离公式以及三角函数的有界性,即可求解.
(1)由ρ=4cos θ得ρ2=4ρcos θ,所以x2+y2-4x=0,
所以圆C的直角坐标方程为(x-2)2+y2=4.
设A,B对应的参数分别为t1,t2.
将直线l的参数方程代入圆C:
(x-2)2+y2=4,并整理得t2+t=0,
解得t1=0,t2=-.
所以直线l被圆C截得的弦AB的长为|t1-t2|=.
(2)由题意得,直线l的普通方程为x-y-4=0.
圆C的参数方程为 (θ为参数),
可设圆C上的动点P(2+2cos θ,2sin θ),
则点P到直线l的距离
d=,
当=-1时,d取得最大值,且d的最大值为2+.
所以S△ABP=××(2+)=2+,
即△ABP的面积的最大值为2+.
【题目】千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A的100天日落和夜晚天气,得到如下列联表:
夜晚天气 日落云里走 | 下雨 | 未下雨 |
出现 | 25 | 5 |
未出现 | 25 | 45 |
临界值表 | ||||
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
并计算得到,下列小波对地区A天气判断不正确的是( )
A.夜晚下雨的概率约为
B.未出现“日落云里走”夜晚下雨的概率约为
C.有的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关
D.出现“日落云里走”,有的把握认为夜晚会下雨
【题目】2019年全国“两会”,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国委员会第二次会议,分别于2019年3月5日和3月3日在北京召开为了了解哪些人更关注“两会”,某机构随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制的频率分布直方图如图所示,把年龄落在区间和内的人分别称为“青少年人”和“中老年人”经统计“青少年人”和“中老年人”的人数之比为.其中“青少年人”中有40人关注“两会”,“中老年人”中关注“两会”和不关注“两会”的人数之比是.
(1)求图中的值;现釆用分层抽样在和中随机抽取8名代表,从8人中仼选2人,求2人中至少有1个是“中老年人”的概率是多少?
(2)根据已知条件,完成下面的列联表,并根据此统计结果判断:能否有的把握认为“中老年人”比“青少年人”更加关注“两会”?
关注 | 不关注 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
参考数据及公式:
0.150 | 0.100 | 0.050 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |