题目内容
14.若(x+1)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,则a1+a3+a5=364.分析 在[2+(x-1)]6=的展开式的通项公式 Tr+1=${C}_{6}^{r}$•26-r•(x-1)r 中,分别令r=1,3,5,可得a1=192、a3=160、a5=12,从而求得a1+a3+a5的值.
解答 解:由于(x+1)6=[2+(x-1)]6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,
而[2+(x-1)]6=的展开式的通项公式为 Tr+1=${C}_{6}^{r}$•26-r•(x-1)r,
故分别令r=1,3,5,可得a1=192、a3=160、a5=12,故a1+a3+a5=264,
故答案为:364.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
练习册系列答案
相关题目
19.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了5月1日至5月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$…(1)
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$…(2)
(1)从5月1日至5月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率;
(2)根据5月2日至5月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
温差x(°C) | 10 | 12 | 11 | 13 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$…(2)
(1)从5月1日至5月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均小于25”的概率;
(2)根据5月2日至5月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?