题目内容
12.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的图象(部分)如图所示,则f(x)的解析式是( )A. | f(x)=5sin($\frac{π}{6}$x+$\frac{π}{6}$) | B. | f(x)=5sin($\frac{π}{6}$x-$\frac{π}{6}$) | C. | f(x)=5sin($\frac{π}{3}$x+$\frac{π}{6}$) | D. | f(x)=5sin($\frac{π}{3}$x-$\frac{π}{6}$) |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
解答 解:有函数的图象可得A=5,函数的周期T=$\frac{2π}{ω}$=4(5-2)=12,∴ω=$\frac{π}{6}$.
再根据五点法作图可得 $\frac{π}{6}$×5+φ=π,φ=$\frac{π}{6}$,
故函数的解析式为 f(x)=5sin($\frac{π}{6}$x+$\frac{π}{6}$),
故选:A.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.
练习册系列答案
相关题目
20.根据如图框图,当输出的y=10时,输入的x为( )
A. | 4 | B. | 6或0 | C. | 0 | D. | 4或6 |
7.根据抛物线的光学性质,在焦点处的点光源发出的光经抛物面反射后,将平行于对称轴射出,如图,抛物线C:y2=2px(p>0)的焦点为F,设过抛物线C上的点P的切线为l,现过原点作l的平行线交直线PF于M,则|MF|等于( )
A. | p | B. | $\frac{p}{2}$ | C. | $\frac{3}{8}p$ | D. | $\frac{{\sqrt{2}}}{2}p$ |